Approaches for Deep Neural Network Architecture Adaptation
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Problem 2: Initial condition inversion in a 2D
Navier-Stokes equation

du(x, t)+ou(x, t)-Vu(x, t) =vAu(x, t) + f(x),

Motivation and Goal

Manifold regularization for promoting stability Approach ll: A sensitivity based approach

Challenges: e In a deep network, initial layers learn meaningful representation of e In this approach we consider perturbing a network Qg to pro- o (’8 t) =0,
data. Later layers focus on the actual classification/regression task. duce a new network Q¢ as shown in Figure 5. | u(x, 0) = uo(x). N |
= Neural network architecture design via architecture search We att o mimic thi v with Manifold \arizati e Train a neural network to learn the map from vorticity at time T,
iInvolves training a large number of candidate architectures B eda cMpLLo mlrr.wlc:.l ',?: propzje(rj yﬁvv| q aniroldreguiarization N i.e u(x, T) to the initial vorticity u(x).
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= Answer the following questions: i) When and where to add
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Figure 5. Schematic view of the sensitivity based approach

anew layer; i) How to initialize the new layer. Problem 1: Prototype regression and classification task . e o i ...
X A ® |ﬂ Figure 5, a new |ayer Wlth FGSidual COﬂﬂeCﬁOﬂ aﬂd pal’ame— Figure 6. 2D Navier-Stoke equation. Average error in the predicted parameter field over the
0L [ Test loss by Algo 2.1 —e— Baseline Ne‘?wo.rk—I— Algo 2.2] ters G(P i inSerted betV\/een the 1St and znd |ayer. \/\/hen e =0 spatial domain for the entire test data-set by different methods.
I Test loss by Algo 2.2 —+—Forward Thinking - . ’
35 — — -Baseline network - ()¢ behaves exactly the same as Q) (admissible perturbation).
s 9 e | - | e From the above figure, we see that our approach
_ Similarity matrix S ¢ - - = i e \\e rely on ideas from topo.lo.g.y optimization & op‘umal trans=  gutperforms other adaptation strategies!
'Bl] Y ke 20 - port theory to find the best initialization ¢ for a given small €.
M — Number of training samples 151 ) Roughly speaking we look at the following optimization problem: .
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J — Training loss function RV RV — argmin(J (Qe) — T (Qq)), st |l¢|5 =1 | o |
n N> N2 NTNE N NEN N S %A ¢ = Both the layerwise training algorithm and the
()g — Initial neural network Index of Neural Network /Hidden layer o o
, o sensitivity based approach outperforms existing
Qe o Perturbed neural ﬂetWOrk Figure 2. Performance of proposed approach over other strategies on a Boston housing price prediction o We theﬂ d@termlﬂe the beSt |Ocat|Oﬂ l alOﬂg the depth to add neural architecture adaptaﬁon Strategies.
¢ — Initialization of a newly added layer oroblem. Our aporoach outperforms other methods! a new layer that leads to maximum decrease in 7 (most sensitive). , ,
= Both approaches provides answers to the following
L 1A by Algo 2.1 (87 %) ——— Baseline+ Algo 2.2 (98.2 % . . !
B Acoracy by Algo 2.2 (96.7%)  —+— Forward Thinking Hettinger ot . (98.3 %) questions: a) Where to add new capacity (layer)
—— Baseline network (382 %) — O Leflet:5 (CTN) (986 %) . during the training process?; b) How to initialize the
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rameters — Add a new layer (identity map) and train again! S o) Problem 1: Wind velocity reconstruction problem Publication
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Figure 3. Performance of proposed approach over other strategies on MNIST classification problem. Our
approach outperforms other methods!
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Problem 2: Conductivity field inversion in a 2D Heat equation
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(ResNet Block) Solution after adding 2 layers  Solution after adding 3 layers  Solution after adding 4 layers

— — — ° ° True solution
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Solution after adding 5 layers  Solution after adding 6 layers True solution The authors are gratefLﬂ to the support from the National
_ o3 _ ' os _ ' o8 Figure 4. Wind velocity reconstruction. Evolution of solution (3D air current profile) upon adding new hidden Science Fou ndaﬁon, the Department of Energy, and the
e Regularizers to constrain the function learnt by each layer: | .o .o . layers. Texas Advanced Computing Center. The authors would
e Manifold regularization (®,,,), sparsity regularization (®g), and [ . e o] . b e From Figure 4 we see that adding more parameters progres- like .to thank all. the membgrs of Pho-Ices group, Oden
a physics-informed regularization term (®y). | DU e By sively refines the solution Institute for fruitful discussions.
e Layerwise training saturates after adding some layers! R

e Our algorithm also exhibits superior performance (in terms of
e Sequential residual learning (SRL): A post-processing stage '8 2D Heat equation. Evolution of estimated conductivity held across the hidden layers for a particular 30 squared error on a test data-set) compared to other adap-

test measurement sample. Adding layers progressively with manifold regularization recovers fine details in the

using a sequence of small networks to improve predictions! parameter field. Achieved average relative error is superior to other adaptation strategies! tation strategies and neural architecture search algorithm!



