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Motivation and Goal

Challenges:

Neural network architecture design via architecture search
involves training a large number of candidate architectures
to retrieve the best performing neural network.
Traditional neural architecture search (NAS) algorithms are
therefore computationally expensive.

Goal: Propose mathematically principled algorithms to:

Progressively adapt/grow neural network architecture along
the depth.
Answer the following questions: i) When and where to add
a new layer; ii) How to initialize the new layer.

Notations

βij − Similarity matrix
M − Number of training samples

N (l)
θ − lth hidden layer with parameters θ

J − Training loss function
Ω0 − Initial neural network
Ωϵ − Perturbed neural network

ϕ − Initialization of a newly added layer

Approach I: Layerwise training algorithm

• Layerwise learning procedure: Train a layer → Freeze the pa‐
rameters → Add a new layer (identity map) and train again!

Figure 1. Schematics of layerwise training algorithm

• Regularizers to constrain the function learnt by each layer:

•Manifold regularization (Φm), sparsity regularization (Φs), and
a physics‐informed regularization term (Φp).

• Layerwise training saturates after adding some layers!

• Sequential residual learning (SRL): A post‐processing stage
using a sequence of small networks to improve predictions!

Manifold regularization for promoting stability

• In a deep network, initial layers learn meaningful representation of
data. Later layers focus on the actual classification/regression task.

•Weattempt tomimic this property withManifold regularization
based on pairwise similarity and defined as:

Φm =
1

M2 ∑
i,j

βij

∥∥∥N (l)
θ (xi)−N (l)

θ (xj)
∥∥∥2

2
.

• Manifold regularization ensures that similar input data points
are mapped to similar outputs for each layer l.

Numerical results

Problem 1: Prototype regression and classification task

Figure 2. Performance of proposed approach over other strategies on a Boston housing price prediction
problem. Our approach outperforms other methods!

Accuracy by Algo 2.1 (87 %)
Accuracy by Algo 2.2 (98.7 %)
Baseline network (98.2 %)

Baseline+ Algo 2.2 (98.2 %)
Forward Thinking-Hettinger et al. (98.3 %)
LeNet-5 (CNN) (98.6 %)

Figure 3. Performance of proposed approach over other strategies on MNIST classification problem. Our
approach outperforms other methods!

Problem 2: Conductivity field inversion in a 2D Heat equation

Solution after adding 2 layers Solution after adding 3 layers Solution after adding 4 layers
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Solution after adding 5 layers Solution after adding 6 layers True solution
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Figure 4. 2D Heat equation. Evolution of estimated conductivity field across the hidden layers for a particular
test measurement sample. Adding layers progressively with manifold regularization recovers fine details in the
parameter field. Achieved average relative error is superior to other adaptation strategies!

Approach II: A sensitivity based approach

• In this approach we consider perturbing a network Ω0 to pro‐
duce a new network Ωϵ as shown in Figure 5.
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where ‘=’ is used to imply the fact that the network Ωϵ|ϵ=0 behaves exactly the same way as Ω0 under standard training
process, where the added layer is redundant and only acts as a message passing layer.
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Figure 1: Schematic view of the topological derivative approach: A new layer with parameters ϵϕ is inserted between
the 1st and 2nd layer. When ϵ = 0, the network Ωϵ behaves exactly the same way as Ω0 under standard training process
(Residual connections are not shown in the figure).

Proposition 1 Constructing an admissible perturbation

An admissible perturbation can be constructed by making the following choices:

1. Choose A as the set of all Residual neural networks where the hidden layer propagation equation in 1 is
written as:

xs,t+1 = ft+1(xs,t, θt+1) = xs,t + gt+1(xs,t, θt+1), t = 1, . . . T − 2. (4)

2. Choose the activation function σ such that gt+1 (., .) is continuously differentiable w.r.t both the arguments
and:

gt+1(xs,t, 0) = 0, gt+1,1(xs,t, 0) = 0, gt+1,2(xs,t, 0) = 0.

Proof: Let us denote the newly added hidden layer as the (l+ 1
2 )

th hidden layer. The forward propagation of residual
neural network Ωϵ from lth layer to (l + 1)th layer can be written as:

xs,l+ 1
2
= fl+ 1

2
(xs,l, ϵϕ) = xs,l + gl+ 1

2
(xs,l, ϵϕ), (5a)

xs,l+1 = fl+1

�
xs,l+ 1

2
, θl+1

�
= xs,l+ 1

2
+ gl+1

�
xs,l+ 1

2
, θl+1

�
. (5b)

Now, taking the limit ϵ → 0 on both sides of (5a) and assuming gl+ 1
2
(., .) to be continuous everywhere w.r.t second

argument yields:

xs,l+ 1
2
= xs,l, =⇒ xs,l+1 = xs,l + gl+1 (xs,l, θl+1) = fl+1 (xs,l, θl+1) .

where we have used the fact that lim
ϵ→0

gl+ 1
2
(xs,l, ϵϕ) = 0, since σ(l+ 1

2 )
(0) = 0. Therefore, adding a new layer recovers

the forward propagation equations of the original network Ω0 as ϵ → 0. Now, the backward propagation of the adjoint
can be obtained as:

ps,l+ 1
2
=

h
fl+1,1(xs,l+ 1

2
,θl+1)

iT
ps,l+1 = ps,l+1 +

h
gl+1,1

�
xs,l+ 1

2
, θl+1

�iT
ps,l+1,

ps,l =
h
fl+ 1

2 ,1
(xs,l, ϵϕ)

iT
ps,l+ 1

2
= ps,l+ 1

2
+

h
gl+ 1

2 ,1
(xs,l, ϵϕ)

iT
ps,l+ 1

2
.

(6)

4

Figure 5. Schematic view of the sensitivity based approach

• In Figure 5, a new layer with residual connection and parame‐
ters ϵϕ is inserted between the 1st and 2nd layer. When ϵ = 0,
Ωϵ behaves exactly the same as Ω0 (admissible perturbation).

• We rely on ideas from topology optimization & optimal trans‐
port theory to find the best initialization ϕ for a given small ϵ.
Roughly speaking we look at the following optimization problem:

arg min
ϕ

(J (Ωϵ)−J (Ω0)), s.t ∥ϕ∥2
2 = 1.

•We then determine the best location l∗ along the depth to add
a new layer that leads tomaximumdecrease inJ (most sensitive).

Numerical results

Problem 1: Wind velocity reconstruction problem

• Objective is to train a network that reconstructs the wind ve‐
locity profile (in space) given sparse measurement data.

True solution

Figure 4. Wind velocity reconstruction. Evolution of solution (3D air current profile) upon adding new hidden
layers.

• From Figure 4 we see that adding more parameters progres‐
sively refines the solution.

• Our algorithm also exhibits superior performance (in terms of
mean squared error on a test data‐set) compared to other adap‐
tation strategies and neural architecture search algorithm!

Problem 2: Initial condition inversion in a 2D
Navier‐Stokes equation

∂tu(x, t) + v(x, t) · ∇u(x, t) = ν∆u(x, t) + f (x),
∇ · (x, t) = 0,
u(x, 0) = u0(x).

• Train a neural network to learn the map from vorticity at time T,
i.e u(x, T) to the initial vorticity u0(x).

Proposed approach Random layer insertion Net2DeeperNet
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Figure 6. 2D Navier‐Stoke equation. Average error in the predicted parameter field over the
spatial domain for the entire test data‐set by different methods.

• From the above figure, we see that our approach
outperforms other adaptation strategies!

Conclusions

Both the layerwise training algorithm and the
sensitivity based approach outperforms existing
neural architecture adaptation strategies.
Both approaches provides answers to the following
questions: a) Where to add new capacity (layer)
during the training process?; b) How to initialize the
new capacity?
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