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“ Transformer Architectures Provide a Unique @;,6'8"6;0
Opportunity to Solve Inverse Problems COMPU

Inverse Problems:

Given only partially
observed outputs can we
recover the inputs that
caused them?
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Temperature y: Sensors

Conductivity field x

Solution: Determine parameter placed at 10 locations (black dots).

distribution g(x|y) instead of

inverse function (which does Data

not exist). «a<x

Current deep learning based Transformer architectures which act as

solutions do not model the forward  unified architectures to map between

and inverse processes jointly thus seguences. I

posing fidelity risks. 0 &=
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§ : : AOA.
‘ Regression Transformers For Posterior a969%
Inference OMP

= Qur transformer™® architecture takes conductivity field and partially observed temperature field jointly as inputs:
— a) Interpolated measurement (based on 10 measurements); and b) A generated sample from the prior p(x).

Generate possible Fully reconstruc;ted Generated solution
solutions from q(x|y) measurement field from q(x|y) =  Qutput of the transformer:

I - — Generated solutions to the inverse problem,
Bayesian Inversion - k |

— Fully reconstructed measurement field.

= Joint modeling of prior sample and interpolated

s s measurement to generate a solution.
Partially observed Prior distribution p(x) ',Tr‘an_siform.er ar,c:!'l.i'tec,ture,_.;; ,
measurement y | 5 = We designed novel loss functions to train this
unified architecture.

|

A mathematical model
connecting x and y,
e.g., Heat equation.

Prior p(x) may be determined from
experience, such as previous Interpolataditd

/ from partially observed
experiments. measurements

I

Once trained, our framework can generate all
possible inverse solutions (conductivity fields) for
any partially observed temperature field y.

A generated sample
from prior
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“Numerical Results For Conductivity Field o;c'rgc');@
Inversion in a 2D Heat Equation OMP
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— Solution to the inverse problem: Generated conductivity fields for a particular test measurement input
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Let’s check if our generated solutions
are consistent!
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g Solution to the forward problem: Full temperature field reconstruction from generated conductivity fields We see that all the solutions produces back the same
g 10 B partially observed temperature field!
S —— Computed ECP
v .. I Ideal ECP
Ground truth GPR/Kriging Proposed approach °
. ; ' S os
. . , c
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, o ¢ Showing that we can recover all
ol solutions (conductivity field) by our
approach!
~ Black dots measured MSE: 0.0048 MSE: 0.00043 Y Veredibility level (1a)

Expected coverage probability (Lemos et al.)
Our method consistently produces accurate solutions
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